Abstract
What is the neural representation of a speech code as it evolves in time? How do listeners integrate temporally distributed phonemic information across hundreds of milliseconds, even backwards in time, into coherent representations of syllables and words? What sorts of brain mechanisms encode the correct temporal order, despite such backwards effects, during speech perception? How does the brain extract rate-invariant properties of variable-rate speech? This article describes an emerging neural model that suggests answers to these questions, while quantitatively simulating challenging data about audition, speech and word recognition. This model includes bottom-up filtering, horizontal competitive, and top-down attentional interactions between a working memory for short-term storage of phonetic items and a list categorization network for grouping sequences of items. The conscious speech and word recognition code is suggested to be a resonant wave of activation across such a network, and a percept of silence is proposed to be a temporal discontinuity in the rate with which such a resonant wave evolves. Properties of these resonant waves can be traced to the brain mechanisms whereby auditory, speech, and language representations are learned in a stable way through time. Because resonances are proposed to control stable learning, the model is called an Adaptive Resonance Theory, or ART, model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.