Abstract

We investigate the problem of linear temporal instability of the modes that satisfy the dyad resonance conditions and the associated nonlinear wave interactions in jets driven by either a constant or a variable external electric field. A mathematical model, which is developed and used for the temporally growing modes with resonance and their nonlinear wave interactions in electrically driven jet flows, leads to equations for the unknown amplitudes of such waves. These equations are solved for both water and glycerol jet cases, and the expressions for the dependent variables of the corresponding modes are determined. The results of the generated data for these dependent variables versus time indicate, in particular, that the instability resulted from the nonlinear interactions of such modes is mostly quite strong but can also lead to significant reduction in the jet radius.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.