Abstract

The resonant chaotic dynamics of a symmetric cross-ply composite laminated plate are studied using the exponential dichotomies and an averaging procedure for the first time. The partial differential governing equations of motion for the symmetric cross-ply composite laminated plate are derived by using Reddy’s third-order shear deformation plate theory and von Karman type equation. The partial differential governing equations of motion are discretized into two-degree-of-freedom nonlinear systems including the quadratic and cubic nonlinear terms by using Galerkin method. There exists a fixed point of saddle-focus in the linear part for two-degree-of-freedom nonlinear system. The Melnikov method containing the terms of the nonhyperbolic mode is developed to investigate the resonant chaotic motions of the symmetric cross-ply composite laminated plate. The obtained results indicate that the nonhyperbolic mode of the symmetric cross-ply composite laminated plate does not affect the critical conditions in the occurrence of chaotic motions in the resonant case. When the resonant chaotic motion occurs, we can draw a conclusion that the resonant chaotic motions of the hyperbolic subsystem are shadowed for the full nonlinear system of the symmetric cross-ply composite laminated plate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.