Abstract

We have investigated the resonance Raman (RR) spectra of the directly linked porphyrin arrays in order to elucidate the relationship between excitonic interactions and molecular geometry depending on the number of pigments in the arrays. The RR spectra obtained by photoexcitation at the high-energy exciton Soret bands in the arrays are mainly composed of Raman modes localized on the constituent porphyrin monomers. In contrast, the RR spectra of the arrays with photoexcitation at the low-energy exciton split Soret bands reveal some characteristic Raman bands arising from strong excitonic interactions between the adjacent porphyrins in the arrays. Based on the RR measurements of the isotope labeled analogues and the normal-mode analysis of the dimer, it is suggested that the photoexcitation at the high-energy Soret band produces an electronically excited state largely localized within a monomer unit and that at the low-energy exciton split Soret band the excited state is in a way delocalized throughout the ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.