Abstract

The interaction of the low frequency (10−2 Hz) MHD waves, observed upstream of comets, with the structured plasma near the cometary bow wave is examined. It is suggested that the waves undergo resonant absorption due to either ambient density gradients or localized shear in the background magnetic field. The absorption process can give rise to rapid heating of the solar wind protons, in agreement with observations from comet Halley. Since the free energy for the generation of MHD waves came from deceleration (without accompanying heating) of the solar wind protons during the pick up of cometary ions, the subsequent reabsorption of the energy is equivalent to a nonlocal transformation of ordered to random energy and can be described as nonlocal viscosity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.