Abstract

Abstract We present ALMA observations of the CO(1−0) line and 3 mm continuum emission in eight ultraluminous infrared (IR) quasi-stellar objects (QSOs) at z = 0.06–0.19. All eight IR QSO hosts are clearly resolved in their CO molecular gas emission with a median source size of 3.2 kpc, and seven out of eight sources are detected in 3 mm continuum, which is found to be more centrally concentrated with respect to molecular gas with sizes of 0.4−1.0 kpc. Our observations reveal a diversity of CO morphology and kinematics for the IR QSO systems, which can be roughly classified into three categories: rotating gas disk with ordered velocity gradient, compact CO peak with disturbed velocity, and multiple CO distinct sources undergoing a merger between a luminous QSO and a companion galaxy separated by a few kpc. The molecular gas in three of the IR QSO hosts is found to be rotation-dominated with a ratio of the maximum rotation velocity to the local velocity dispersion of V rot/σ = 4–6. Basic estimates of the dynamical masses within the CO-emitting regions give masses between 7.4 × 109 and 6.9 × 1010 M ⊙. We find an increasing trend between black hole mass accretion rate and star formation rate (SFR) over 3 orders of magnitude in far-IR luminosity/SFR, in line with the correlation between QSO bolometric luminosity and star formation activity, indicative of a likely direct connection between active galactic nuclei and star formation activity over galaxy evolution timescales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.