Abstract

Due to its excellent air stability, low cost, and high ionic conductivity, Li1.3Al0.3Ti1.7(PO4)3 (LATP) has emerged as a viable option for solid-state lithium batteries (SSLBs). However, the irreversible reactivity between LATP and the Li-metal anode severely restrict its electrochemical performances. Herein, a tri-layer composite solid electrolyte (t-CSE1) comprised of LATP, PVDF-HFP, SN, and LiTFSI as the middle layer and Al-LLZO, PVDF-HFP, SN, and LiTFSI as the top and bottom layers is prepared to solve these prominent limitations since Al-LLZO is stable towards Li metal anode. As a result, the lithium plating-stripping lifetimes for the Li||Li symmetry cell is prolonged from 550 to 1950 h at 0.1 mA cm−2 without any residual redox products. In addition, the as-prepared t-CSE1 exhibited excellent ionic conductivity (ca. 6.46 × 10−4 S cm−1 at room temperature), high lithium-ion transference number (ca. 0.69) and remarkable mechanical strength (ca. 12.82 MPa). Furthermore, the Li||LiFePO4 (Li||LFP) full cell achieved significantly improved long cycle performances of 500 cycles with 80.31 % capacity retention and 99.93 % average coulombic efficiency at 0.2C. Moreover, the Li||LFP full cell showed 85.53 % capacity retention and 99.95 % coulombic efficiency after 200 cycles at 0.5C at room temperature. Thus, this study gives an insight into how to prevent the electrochemical incompatibility between LATP and Li metal for SSLBs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.