Abstract

We consider the problem of characterizing the wavefront set of a tempered distribution $$u\in \mathcal {S}'(\mathbb {R}^{d})$$ in terms of its continuous wavelet transform, where the latter is defined with respect to a suitably chosen dilation group $$H\subset \mathrm{GL}(\mathbb {R}^{d})$$ . In this paper we develop a comprehensive and unified approach that allows to establish characterizations of the wavefront set in terms of rapid coefficient decay, for a large variety of dilation groups. For this purpose, we introduce two technical conditions on the dual action of the group H, called microlocal admissibility and (weak) cone approximation property. Essentially, microlocal admissibility sets up a systematic relationship between the scales in a wavelet dilated by $$h\in H$$ on one side, and the matrix norm of h on the other side. The (weak) cone approximation property describes the ability of the wavelet system to adapt its frequency-side localization to arbitrary frequency cones. Together, microlocal admissibility and the weak cone approximation property allow the characterization of points in the wavefront set using multiple wavelets. Replacing the weak cone approximation by its stronger counterpart gives rise to single wavelet characterizations. We illustrate the scope of our results by discussing—in any dimension $$d\ge 2$$ —the similitude, diagonal and shearlet dilation groups, for which we verify the pertinent conditions. As a result, similitude and diagonal groups can be employed for multiple wavelet characterizations, whereas for the shearlet groups a single wavelet suffices. In particular, the shearlet characterization (previously only established for $$d=2$$ ) holds in arbitrary dimensions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.