Abstract

A resistor- and pore-network methodology is used to examine transport of ions in various ion-conducting polymers. The model is used to examine ion conduction in random and correlated (at the mesoscale) distributions of high and low conductive domains showing the impact that defects or different conduction modes have on overall effective conductivity and percolation. The specific case of Nafion is modeled where swelling is accounted for as well as a spatially varying conductivity within the nanodomains. The model is also used to investigate conduction in thin-films, where a substantial drop in conductivity is witnessed for films less than 50nm thick. The model shows good agreement with experimental data and provides a methodology for efficient multiscale modeling of transport in ion-conducting polymers from the nanoscale morphology through the mesoscale transport pathways to the observable macroscale properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.