Abstract

We report a study of resistive switching in a silicon-based memristor/resistive RAM (RRAM) device in which the active layer is silicon-rich silica. The resistive switching phenomenon is an intrinsic property of the silicon-rich oxide layer and does not depend on the diffusion of metallic ions to form conductive paths. In contrast to other work in the literature, switching occurs in ambient conditions, and is not limited to the surface of the active material. We propose a switching mechanism driven by competing field-driven formation and current-driven destruction of filamentary conductive pathways. We demonstrate that conduction is dominated by trap assisted tunneling through noncontinuous conduction paths consisting of silicon nanoinclusions in a highly nonstoichiometric suboxide phase. We hypothesize that such nanoinclusions nucleate preferentially at internal grain boundaries in nanostructured films. Switching exhibits the pinched hysteresis I/V loop characteristic of memristive systems, and on/off resistance ratios of 104:1 or higher can be easily achieved. Scanning tunneling microscopy suggests that switchable conductive pathways are 10 nm in diameter or smaller. Programming currents can be as low as 2 μA, and transition times are on the nanosecond scale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.