Abstract
Parker instability leads to the formation of tangential discontinuities in a magnetic field and subsequent magnetic reconnection due to a numerical and/or an explicit resistivity. In this paper we investigate the role of the uniform, localized and numerical resistivity on the diusion of magnetic field lines during the growth phase of Parker instability modes. We propose a new method to quantify the diusion of magnetic field lines which is attributed to the presence of resistivity in ideal and non- ideal MHD codes. The method relies (1) on integration of magnetic lines in between periodic boundaries, (2) on measurements of the dispersion of magnetic field lines with the left and the right periodic boundaries and (3) on a statistical analysis of shifts of a large set of magnetic lines. The proposed method makes it possible to detect topological evolution of magnetic field. We perform a series of resistive MHD simulations of the Parker instability in uniformly rotating galactic disks. We follow the topological evolution of the magnetic field evolving due to the Parker instability and relate it to the ratio of total to uniform magnetic field in galactic disks. We find that after the onset of the Parker instability, the magnetic field becomes first tangled and later on it evolves toward a uniform state due to the presence of resistivity. A similar eect of a varying contribution of a turbulent magnetic field is observed in arms and inter-arm regions of galaxies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.