Abstract
In the current work we have investigated the cellular and molecular regulation of resistin secretion in cultured and primary mouse adipocytes. Resistin is an adipose tissue hormone proposed to contribute to metabolic disease. In rodents, resistin is secreted from white adipocytes whereas it is in humans synthesised and released from other cell types within white adipose tissue. The metabolic importance of resistin has been studied in both mouse and man, but the regulation of its release remains poorly investigated. Here we define that, in mouse adipocytes, resistin secretion is triggered by an intracellular elevation of cAMP and/or Ca2+. Resistin release is stimulated via activation of beta 3 adrenergic receptors (β3ARs) and the downstream signalling protein exchange protein activated by cAMP (Epac). The secretion of resistin is markedly abrogated in adipocytes isolated from obese and diabetic mice. Immunocytochemical staining demonstrates a significant overlap between signals for resistin and the adipocyte hormone adiponectin. Our data propose that resistin and adiponectin are contained within the same vesicles in mouse adipocytes and that the two hormones are co-secreted in response to the same exocytosis-triggering signals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.