Abstract

Metal-bonded diamond impregnated tools are being increasingly used in the processing of natural stone, sawing and drilling concrete and brickwork, road repair, petroleum exploration, production of ceramics, cutting frozen foods, etc. Although the main tool wear mechanisms seem to be well identified, the scientific background is still inadequate and extensive fundamental research has to be carried out to better understand how the tool performs in actual applications. This work attempts to address the complex issues of modelling the abrasive wear of the metallic matrix under laboratory conditions. In view of the generated wear data, it becomes evident that a comprehensive characterisation of the matrix’s susceptibility to wear by 2-body and 3-body abrasion can be reliably assessed in a quick and inexpensive manner; whereas tests carried out on diamond impregnated specimens may assist in the prediction of the tool life in abrasive applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.