Abstract

BackgroundProgress made in the control of malaria vectors globally is largely due to the use of insecticides. However, success in the fight against malaria has slowed down or even stalled due to a host of factors including insecticide resistance. The greatest burden of the disease is felt in Africa, particularly Nigeria. Unfortunately, adequate information on insecticide resistance is lacking in many parts of the country, particularly the South-East Zone. Hence, this study aims to bridge the information gap in the Zone.MethodsThe study was conducted from April to December 2016. Anopheles gambiae (s.l.) larvae and pupae were collected from one community each, in the five states of the South-East Zone and reared to the adult stage. The adults were subjected to bioassays for insecticide resistance in accordance with the World Health Organization test procedures, across the four classes of insecticides used in public health. The mosquitoes were also subjected to molecular identification to the species level, and genotyped for West African knockdown resistance mutation (L1014F) and insensitive acetylcholinesterase-1 resistance mutation (G119S).ResultsThe mosquitoes were susceptible (100%) to bendiocarb but resistant to pirimiphos-methyl (39.6%), deltamethrin (57%) and dichlorodiphenyltrichloroethane (DDT) (13%). Molecular analysis revealed that only An. gambiae (sensu stricto) was found in all the states except for Ebonyi, where only Anopheles coluzzii was present. High frequencies (0.6–0.9) of the L1014F mutation were found across the zone. The L1014F mutation was significantly higher in An. gambiae (s.s.) than in An. coluzzii (P < 0.0001). A relatively low frequency (0.2) of the G119S mutation was found in An. coluzzii, and only in Ebonyi State.ConclusionThe results show that mosquitoes collected from the South-East Zone of Nigeria were resistant to all insecticides used, except for bendiocarb. The presence of L1014F and G119S resistance mutations reported in this study calls for urgent attention to stop the growing threat of insecticide resistance in the country.

Highlights

  • Progress made in the control of malaria vectors globally is largely due to the use of insecticides

  • Susceptibility of Anopheles gambiae (s.l.) from the South‐East Zone to deltamethrin and DDT insecticides The average mortality of An. gambiae (s.l.) populations tested with DDT was 13%

  • The highest mortality with DDT was observed in Ebonyi State (18%; 95% confidence interval (CI): 11.03–26.94%) (Figs. 2, 3)

Read more

Summary

Introduction

Progress made in the control of malaria vectors globally is largely due to the use of insecticides. Success in the fight against malaria has slowed down or even stalled due to a host of factors including insecticide resistance. Adequate information on insecticide resistance is lacking in many parts of the country, the South-East Zone. The fight against malaria yielded significant results between the year 2000 and 2015. Within this period, there was a global decline of 18% and 48% in malaria cases and deaths, respectively [1]. In 2017, Africa accounted for an estimated 92% of global malaria cases and 93% of deaths [2]. The ten highest burden African countries recorded 3.5 million more cases in 2017 than they did in the year 2016 [2]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.