Abstract

Steel portal frames are used in Japan as basic structural frames for viaducts in metropolitan areas. These structures may be subject to both near-field and far-field earthquake motions from all directions. Although for isolated single piers the earthquake-resistant design appears to be well established, the earthquake response and the resistance are not fully clarified for portal frames. A study on elastoplastic finite displacement analysis by a finite element model for earthquake resistance of steel portal frame piers of an elevated highway is presented. The incidental earthquake waves are assumed to come from arbitrary directions; for simplicity, the analysis considers five different directions covering the in-plane of the frame (0 deg from the transverse direction of the bridge axis) and the out-of-plane directions (30 deg, 60 deg, 75 deg and 90 deg). Some results were compared with those from experiments on portal rigid-frame bridge piers under in-plane loading conducted at Kyoto University. It was found that it is important to take the correlation of in-plane and out-of-plane responses into consideration for the rational earthquake-resistant design of a portal frame bridge pier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.