Abstract

Station-keeping of a small spacecraft is studied and a solution based on resilient periodic state-feedback control laws is proposed. Linearized equations of the relative motion of the satellite near an eccentric reference orbit are derived in the presence of the second zonal gravitational harmonic J2 and atmospheric drag perturbations. After a discretization of the model, a resilient H2 state-feedback control law is computed by a linear matrix inequality-based algorithm. Illustrative nonlinear simulations show the efficiency of the approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.