Abstract

This paper describes a computational design-support tool created in response to safe-distancing measures enforced during the COVID-19 pandemic. The tool was developed for a specific use case: understanding congestion in crowded migrant worker dormitories that experienced high rates of COVID-19 transmission in 2020. Building from agent-based and network-based computational simulations, the tool presents a hybrid method for simulating building resident movements based on known or pre-determined schedules and likely itineraries. This hybrid method affords the design tool a novel approach to simultaneous exploration of spatial and temporal design scenarios. The paper demonstrates the use of the tool on an anonymised case study of a high-density migrant worker dormitory, comparing results from a baseline configuration against design variations that modify dormitory physical configuration and schedule. Comparisons between the design scenarios provide evidence for reflections on pandemic-resilient design and operation strategies for dormitories. A conclusions section considers the extent to which the model and case study results are applicable to other dense institutional buildings and describes the paper’s contributions to general understanding of configurational and operational aspects of resilience in the built environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.