Abstract

In order to improve the ability of the flexible support structure to resist, recover and adapt to the failure of expansive soil slope, it is necessary to analyze and study its structural resilience systematically. Based on the long-term field monitoring test of expansive soil slope with flexible support along the south line of the Guinan key project, combined with the whole life cycle assessment (LCA), this paper discusses the theory and method of resilient design of expansive soil slope with a flexible support structure. The results show that the variation trend of geogrid strain is basically consistent with that of soil pressure at the side of the slope. It increases gradually with the increase in rainfall in the rainy season. When the rainfall decreases significantly in the dry season, the geogrid will shrink accordingly to realize the periodic regulation of lateral deformation of expansive soil. The life cycle assessment analysis shows that the carbon emission of the flexible support structure is 10% of that of the rigid support structure, and the resource and energy consumption of the flexible support structure is about 50% lower than that of the rigid support structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.