Abstract

Flonicamid, a novel selective systemic pesticide, can effectively control a broad range of insect pests. However, the dissipation behaviors and the terminal residues of flonicamid and its metabolites in some crops and soils remain unclear. Herein, an easy, sensitive and reliable method using a modified QuEChERS extraction coupled with LC-MS/MS for the simultaneous analysis of flonicamid and its metabolites in cabbage and soil was developed. Based on this method, the dissipation behaviors of flonicamid and its metabolites as well as their persistence in cabbage and soil during harvest were investigated. Flonicamid degraded rapidly, and the half-lives of flonicamid only and total residues (the sum of flonicamid and its metabolites) were 1.49–4.59 and 1.97–4.99 days in cabbage, and 2.12–7.97 and 2.04–7.62 days in soil, respectively. When 50% flonicamid WG was sprayed once or twice at the recommended dose and 1.5-fold the recommended dose, the highest residues of total flonicamid in cabbage and soil from different pre-harvest intervals (3, 7 and 14 days) were 0.070 and 0.054 mg kg−1, respectively. The risk quotient (RQ) of flonicamid based on the consumption data from China was below 16.84%, indicating that the use of flonicamid is non-hazardous to humans. These results could not only guide the safe and responsible use of flonicamid in agriculture but also help the Chinese government establish the maximum residue level (MRL) for flonicamid in cabbage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.