Abstract

BackgroundSevere acute respiratory syndrome (SARS) is an emerging infectious disease caused by the novel coronavirus SARS-CoV. The T cell epitopes of the SARS CoV spike protein are well known, but no systematic evaluation of the functional and structural roles of each residue has been reported for these antigenic epitopes. Analysis of the functional importance of side-chains by mutational study may exaggerate the effect by imposing a structural disturbance or an unusual steric, electrostatic or hydrophobic interaction.ResultsWe demonstrated that N50 could induce significant IFN-gamma response from SARS-CoV S DNA immunized mice splenocytes by the means of ELISA, ELISPOT and FACS. Moreover, S366-374 was predicted to be an optimal epitope by bioinformatics tools: ANN, SMM, ARB and BIMAS, and confirmed by IFN-gamma response induced by a series of S358-374-derived peptides. Furthermore, each of S366-374 was replaced by alanine (A), lysine (K) or aspartic acid (D), respectively. ANN was used to estimate the binding affinity of single S366-374 mutants to H-2 Kd. Y367 and L374 were predicated to possess the most important role in peptide binding. Additionally, these one residue mutated peptides were synthesized, and IFN-gamma production induced by G368, V369, A371, T372 and K373 mutated S366-374 were decreased obviously.ConclusionsWe demonstrated that S366-374 is an optimal H-2 Kd CTL epitope in the SARS CoV S protein. Moreover, Y367, S370, and L374 are anchors in the epitope, while C366, G368, V369, A371, T372, and K373 may directly interact with TCR on the surface of CD8-T cells.

Highlights

  • Severe acute respiratory syndrome (SARS) is an emerging infectious disease caused by the novel coronavirus SARS-CoV

  • An SARS CoV S protein Cytotoxic lymphocyte (CTL) epitope, S366–374, was identified and the functions of individual residues were evaluated by bioinformatics tool prediction and by IFN-γ responses induced by a series of modified S366– 374 peptides

  • Amino acid residue L374 is essential for stimulation of IFNγ production in response to S365–374 To identify the optimal epitope in S365–374, a series of S358–374-derived peptides were synthesized and used to stimulate splenocytes from SARS-CoV S DNA vaccine immunized BALB/c mice

Read more

Summary

Introduction

Severe acute respiratory syndrome (SARS) is an emerging infectious disease caused by the novel coronavirus SARS-CoV. The T cell epitopes of the SARS CoV spike protein are well known, but no systematic evaluation of the functional and structural roles of each residue has been reported for these antigenic epitopes. The virion consists of a nucleocapsid (N) core surrounded by an envelope containing three membrane proteins, spike (S), membrane (M) and envelope (E), The capacity of a diverse array of peptides to bind to an individual class I molecule is due to anchor residues in the peptides [8]. The surface features of the binding cleft of the class I MHC molecule are complementary to side chains of the anchor residues in the displayed peptide. An SARS CoV S protein CTL epitope, S366–374, was identified and the functions of individual residues were evaluated by bioinformatics tool prediction and by IFN-γ responses induced by a series of modified S366– 374 peptides

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.