Abstract

Autofrettage processes allow engineers to reduce the thickness of thick-walled cylinders or components in high-pressure applications without sacrificing strength, life, or safety. However, during the autofrettage process, residual stresses will be generated due to plastic deformation. The complex tube material behavior is dominated by the Bauschinger effect. A better understanding and accurate prediction of the residual stress field is critical, which will enable better piping design strategies to minimize deformation and stresses under operating conditions. This study aims to predict and analyze residual stresses resulting from hydraulic re-autofrettage of a swage-autofrettaged thick-walled cylinder by computer modeling. A case study was performed on a thick-walled cylinder of A723 alloy with a radial interference of 2.5%. In order to investigate the effect of the chosen material constitutive representation, results based on the true material constitutive model were compared with the simplified prevalent material model of bi-linear kinematic strain hardening. Computer implementation for the true material was via a user-developed subroutine that incorporates the complex Bauschinger effect. The results indicate that an accurate material constitutive representation is crucial for better and more accurate prediction and understanding of residual stresses induced by autofrettage processes. Computer modeling based on the true material constitutive representation will likely prove to be a powerful tool for the design of autofrettage processes in general and thick-walled cylinders in particular.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.