Abstract

Transformations of applied phosphorus (P) fertilizer to inaccessible residual soil P is the main cause of inadequate P availability to plants in the majority of the cultivated soils. This study investigated the effect of organic wastes (rice-residue biochar, farmyard manure (FYM), poultry manure (PM), green manure (GM), and wheat straw (WS) on residual-P mobilization and its bioavailability in maize crops under different P status soils. Surface soil samples of ‘medium-P’ (12.5–22.5 kg P ha−1) and ‘high-P’ (22.5–50.0 kg P ha−1) status soils were collected from a long-term differential P fertilization experiment on maize-wheat rotation and were subjected to examine P adsorption/desorption, phosphatase activity and microbial biomass P (MBP) after incubation with organic amendments of varying elemental composition. The incorporation of organic manures decreases P sorption with maximum decrease in FYM-treated soils, indicating increased P concentration in soil solution. In contrast, WS due to its wider C/P ratio increased P sorption and did not produce any significant impact on the bioavailability of P. High-P status soils witnessed lower P sorption than medium-P soils. The MBP increased in the order of PM > FYM > GM > WS > biochar irrespective of soil P status. The availability and mobility of residual-P with FYM and PM was significantly higher than that of residual-P from biochar, GM and WS. Organics with wider C/P ratio immobilize bioavailable P in the short term regardless of soil P status.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.