Abstract

Usually, two-dimensional (2D) flexible strain sensors based on cracks have very high sensitivities but small measuring ranges, while the three-dimensional (3D) ones behave in the opposite way. Here, by utilizing the large residual compressive stress of an amorphous carbon (a-C) film and the flexibility of polydimethylsiloxane (PDMS), we developed a facile and economic strategy to fabricate a high-sensitive a-C/PDMS stretchable strain sensor. Results showed that for the first time, the a-C film ranging from 25 nm to 1 μm changed the shape and orientation of conductive scales, as well as made a one-step 2D-to-3D electrical junction transformation in integrated sensors. In particular, the sensor with a 1 μm thick a-C film exhibited the best comprehensive performance, displaying a maximum gauge factor of 746.7 and strain range up to 0.5. However, the linearity decreased slightly as the strain range went beyond 0.43. Additionally, the sensor showed a satisfactory repeatability for 5000 cycles, together with excellent time and temperature drift performances at zero position of 75 ppm full scale (FS) and 25 ppm FS·°C-1 in the range of -20 to 155 °C, respectively. The sensor has large potentials for wearable devices used in the monitoring of various human motions and physiological signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.