Abstract
Facial prior knowledge based methods recently achieved great success on the task of face image super-resolution (SR). The combination of different type of facial knowledge could be leveraged for better super-resolving face images, e.g., facial attribute information with texture and shape information. In this paper, we present a novel deep end-to-end network for face super resolution, named Residual Attribute Attention Network (RAAN), which realizes the efficient feature fusion of various types of facial information. Specifically, we construct a multi-block cascaded structure network with dense connection. Each block has three branches: Texture Prediction Network (TPN), Shape Generation Network (SGN) and Attribute Analysis Network (AAN). We divide the task of face image reconstruction into three steps: extracting the pixel level representation information from the input very low resolution (LR) image via TPN and SGN, extracting the semantic level representation information by AAN from the input, and finally combining the pixel level and semantic level information to recover the high resolution (HR) image. Experiments on benchmark database illustrate that RAAN significantly outperforms state-of-the-arts for very low-resolution face SR problem, both quantitatively and qualitatively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.