Abstract

Tracking-by-detection (TBD) is a significant framework for visual object tracking. However, current trackers are usually updated online based on random sampling with a probability distribution. The performance of the learning-based TBD trackers is limited by the lack of discriminative features, especially when the background is full of semantic distractors. We propose an attention-driven data augmentation method, in which a residual attention mechanism is integrated into the TBD tracking network as supplementary references to identify discriminative image features. A mask generating network is used to simulate changes in target appearances to obtain positive samples, where attention information and image features are combined to identify discriminative features. In addition, we propose a method for mining hard negative samples, which searches for semantic distractors with the response of the attention module. The experiments on the OTB2015, UAV123, and LaSOT benchmarks show that this method achieves competitive performance in terms of accuracy and robustness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.