Abstract

Abstract As regional grids increase penetrations of variable renewable electricity (VRE) sources, demand-side management (DSM) presents an opportunity to reduce electricity-related emissions by shifting consumption patterns in a way that leverages the large diurnal fluctuations in the emissions intensity of the electricity fleet. Here we explore residential precooling, a type of DSM designed to shift the timing of air-conditioning (AC) loads from high-demand periods to periods earlier in the day, as a strategy to reduce peak period demand, CO2 emissions, and residential electricity costs in the grid operated by the California Independent System Operator (CAISO). CAISO provides an interesting case study because it generally has high solar generation during the day that is replaced by fast-ramping natural gas generators when it drops off suddenly in the early evening. Hence, CAISO moves from a fleet of generators that are primarily clean and cheap to a generation fleet that is disproportionately emissions-intensive and expensive over a short period of time, creating an attractive opportunity for precooling. We use EnergyPlus to simulate 480 distinct precooling schedules for four single-family homes across California’s 16 building climate zones. We find that precooling a house during summer months in the climate zone characterizing Downtown Los Angeles can reduce peak period electricity consumption by 1–4 kWh d−1 and cooling-related CO2 emissions by as much as 0.3 kg CO2 d−1 depending on single-family home design. We report results across climate zone and single-family home design and show that precooling can be used to achieve simultaneous reductions in emissions, residential electricity costs, and peak period electricity consumption for a variety of single-family homes and locations across California.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.