Abstract

Stability against reshaping of metallic fcc nanocrystals synthesized with tailored far-from-equilibrium shapes is key to maintaining optimal properties for applications such as catalysis. Yet Arrhenius analysis of experimental reshaping kinetics, and appropriate theory and simulation, is lacking. Thus, we use TEM to monitor the reshaping of Pd nanocubes of ∼25 nm side length between 410 °C (over ∼4.5 h) and 440 °C (over ∼0.25 h), extracting a high effective energy barrier of Eeff ≈ 4.6 eV. We also provide an analytic determination of the energy variation along the optimal pathway for reshaping that involves transfer of atoms across the nanocube surface from edges or corners to form new layers on side {100} facets. The effective barrier from this analysis is shown to increase strongly with the degree of truncation of edges and corners in the synthesized nanocube. Theory matches experiment for the appropriate degree of truncation. In addition, we perform simulations of a stochastic atomistic-level model incorporating a realistic description of diffusive hopping for undercoordinated surface atoms, thereby providing a visualization of the initial reshaping process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.