Abstract

High Explosive Mortar bombs are used on the battlefield for destroying the manpower, non-armoured equipment and shelters. The paper describes an original experimental and numerical approach regarding the potential threats caused by the detonation of 120 mm HE mortar bombs. The evaluation of the bomb effect presumes the fulfillment of experimental trials that focus on two physical mechanisms which appear after the detonation of the cased high explosive. These mechanisms are the shock wave generation and the fragments propulsion, which were also studied by a numerical model that provides results over the bomb fragmentation mode. The novelty of the paper consists in the calibrated 3D numerical model confirmed by the experimental data, which provides information over the fragmentation process of the case and the initial velocity of its fragments, proving that the main threat of this type of ammunition is the effect through metal fragments. The results of numerical simulation and experimental data are used for their comparative analysis and the assessment of the phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.