Abstract

Forest fire can change the eco-stoichiometric characteristics of forest ecosystem elements, reflect the biogeochemical cycle change mode of forest ecosystem environment after fire, and clarify the eco-stoichiometric characteristics of carbon (C), nitrogen (N), phosphorus (P) in forest ecosystem under forest fire disturbance, which is very important for understanding the response mechanism of forest ecosystem to forest fire disturbance. By consulting a large number of relevant literatures, the author summarized and analyzed the impact mode of forest fire disturbance on the C–N–P eco-stoichiometric characteristics of forest ecosystem, as well as the impact of forest fire disturbance on the C–N–P eco-stoichiometric characteristics of plants, C–N–P eco-stoichiometric characteristics of litter, and C–N–P eco-stoichiometric characteristics of soil. It is considered that the C–N–P eco-stoichiometric characteristics of forest ecosystem are mainly affected by fire factors (fire intensity, fire frequency, recovery time after fire), vegetation types and soil properties. In view of the scientific problems that forest fire urgently needs to be solved in the study of forest ecosystem eco-stoichiometry, three aspects: the impact mechanism of forest fire disturbance on the homeostasis of plant eco-stoichiometry, the study of multi-element eco-stoichiometry under forest fire disturbance, the establishment of the eco-chemometrics relationship of the plant–litter–soil composite system under the interference of forest fire are proposed, in order to deeply understand the plant regulation strategy under the interference of forest fire, clarify the mutual coupling mechanism between multiple chemical elements after the interference of forest fire, and improve the relationship between the input and output of aboveground and underground nutrients with the plant–litter–soil as a composite whole, which is of great significance for a deep understanding of the nutrient cycle and balance of the forest ecosystem under the background of global climate change, and reasonable formulation of forest fire management measures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.