Abstract

In order to improve the safety of autonomous vehicles during driving and the comfort of drivers and passengers, the longitudinal dynamics model of the vehicle is first established. Secondly, the longitudinal motion control strategy is designed considering the influence of vehicle driving safety and driver comfort. Based on this, a longitudinal motion controller based on model predictive control is established. The upper controller uses the model predictive control algorithm to calculate the expected acceleration, and the lower controller uses the vehicle inverse longitudinal dynamics model to convert the expected acceleration calculated by the upper controller into throttle opening and braking pressure. Finally, the effectiveness of the longitudinal motion controller is verified by MATLAB / Simulink under different working conditions. The simulation results show that the longitudinal motion controller designed in this paper improves the comfort of drivers and passengers under the premise of ensuring the safety of vehicles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.