Abstract
Ultra-wideband (UWB) nonlinear frequency modulation (NLFM) waveforms have the advantages of low sidelobes and high resolution. By extending the frequency domain wideband synthesis method to the NLFM waveform, the synthetic bandwidth will be limited, and the grating lobe will grow as the number of subpulses increases at a fixed synthetic bandwidth. Aiming for the highly periodic grating lobes caused by equally spaced splicing and small subpulse time-bandwidth products (TxBW), a multisubpulse UWB NLFM waveform synthesis method is proposed in this paper. Random frequency hopping and spectral correction are utilized to disperse the energy of periodic grating lobes and optimize the matched filter of the subpulse, thereby reducing notches and Fresnel ripples in the synthesized spectrum. The results of the hardware-in-the-loop simulation experiment show that the peak sidelobe ratio (PSLR) and the integral sidelobe ratio (ISLR) of the NLFM synthetic wideband waveform (SWW) obtained by 50 subpulses with a bandwidth of 36 MHz are improved by 4.8 dBs and 4.5 dBs, respectively, when compared to the frequency domain wideband synthesis method, and that the grating lobe is suppressed by an average of 10.6 dBs. It also performs well in terms of point target resolution, and it has potential for 2D radar super-resolution imaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.