Abstract

To ensure the sustainable development of energy supply, there is a continuous increase in demand for deep coal mining, making safe and efficient extraction a crucial area of research. However, with the increasing depth, rising ground temperatures pose new challenges for safe and sustainable mining operations. Among these challenges, coal and gas outburst dynamic hazards stand out as significant issues. Therefore, it is necessary to assess the impact of temperature variations on coal and gas outburst disaster prevention and control. To investigate this effect, we conducted an analysis based on outburst-triggering mechanisms and adsorption–desorption processes. Temperature was considered as the primary controlled variable, while gas expansion energy served as the criterion for assessing outburst hazards. Kilometer-deep coal samples were selected for measurement, focusing on indicators such as Langmuir adsorption constants (a,b), gas content (Q), gas pressure (P) and drilling cutting desorption indices (K1, Δh2). The results indicate that, under the same gas pressure, there is a slight decreasing trend in gas expansion energy with increasing temperature, although the overall change is minimal. Hence, the sole influence of temperature on the gas’s ability to perform work during outbursts is limited. Temperature exerts varying degrees of influence on gas parameters such as gas content and drill cutting desorption indices. The fluctuation amplitudes of these indicators range from large to small in the following order: Δh2 > ΔP > Q > K1 > P. Additionally, their correlation with gas expansion energy decreases in the following order: P > Q > Δh2 > K1 > ΔP. Thus, the influence of temperature on the indicators used in various prediction methods exhibits inconsistency, emphasizing the importance of considering temperature effects on predicted values. Gas pressure emerges as the optimal indicator for outburst determination, while gas content and drill cutting desorption indices are preferable as predictive indicators. These results will provide valuable references for the sustainable and safe development, risk assessment and prediction of deep coal mining.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.