Abstract

Related studies showed that viscosity has a great effect on the formability of sheet metal in viscous pressure forming. However, the viscosity of viscous medium keeps constant in VPF. In this paper, a new flexible-die forming method for sheet metal using magnetorheological (MR) fluids, magnetorheological pressure forming (MRPF), is proposed, which enables the viscosity of flexible-die medium adjustable by changing the magnetic fields during the forming process. Squeezing tests of MR fluid show that its rheological behavior can be changed greatly under different magnetic fields. Magnetorheological pressure bulging tests of Al1060 sheet are conducted on the self-designed experimental apparatus. Experimental results show that MR fluids can be used effectively as a flexible-die medium to form the parts and its rheological behavior can be adjusted during bulging process. Variation of MR fluid's rheological behavior can lead to different forming pressure load paths and have an effect on sheet metal formability. For the same piston stroke of 8.0mm, when the magnetic flux density is 0.180T and 0.318T, average dome height of bulging specimen is 8.71mm and 10.61mm, respectively. The value increases significantly by 21.8%. At the same time, the maximum thickness strain increases from −9.2% to −23.0%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.