Abstract
In this paper, a method of micro-punching driven by combining laser-induced cavitation was proposed. By analysing the surface roughness and the morphology of copper foil punched by the process, the influences of key process parameters including laser energy, cavitation position and punching times on the punching workpiece were systematically studied. With the laser focus position changing from -1 mm to +3 mm, the maximum depth of punching copper foil pits gradually decreased from 118.10 μm to 55.19 μm, and the ablative degree of the pit bottom reduced gradually. Meanwhile, it is found by high speed camera that the plasma shock, collapse shock and micro-jet produced by laser induced cavitation are the main driven power sources for deformation. Finally, the process is optimized with laser focus position of +2 mm, laser energy of 10.1 mJ and 5 laser pulses, the surface ablation could be completely avoided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.