Abstract

There are more and more popular investment fund projects in the continuous economic development; the prediction and performance continuity become hot topics in the financial field. Scholars’ enthusiasm for this also reflects the domestic fund primary stage progress, and there is a huge application demand in China. The prediction of fund performance can help investors to avoid risks and improve returns and help managers to learn more unknown information from the prediction for the sake of guide market well and manage the market orderly. In the past research, the traditional way is to use the advantages of neural network to build a model to predict the continuous trend foundation performance, but the author found that the traditional single neural network (NN) algorithm has a large error value in the research. With the discussion, the particle swarm optimization (PSO) algorithm is added to the radial basis function (BRF) neural network, and PSO is conditioned to optimize and improve the RBF NN combining the advantages of both sides; a new set of PSO‐RBF neural network security fund performance prediction method is summed up, which optimizes the structure and workflow of the algorithm. In the research, the author takes the real data as the reference and compares the prediction results with the traditional method RBF and the improved PSO‐RBF. In the prediction results of the continuous trend, the highest value, and the lowest value in the period of the security fund performance, the new PSO‐RBF has a good prediction in the fund performance prediction, and its accuracy rate is greatly improved compared with the traditional method Sheng, with good application value, and is worth popularizing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.