Abstract
COVID-19 is highly contagious, and proper wearing of a mask can hinder the spread of the virus. However, complex factors in natural scenes, including occlusion, dense, and small-scale targets, frequently lead to target misdetection and missed detection. To address these issues, this paper proposes a YOLOv5-based mask-wearing detection algorithm, YOLOv5-CBD. Firstly, the Coordinate Attention mechanism is introduced into the feature fusion process to stress critical features and decrease the impact of redundant features after feature fusion. Then, the original feature pyramid network module in the feature fusion module was replaced with a weighted bidirectional feature pyramid network to achieve efficient bidirectional cross-scale connectivity and weighted feature fusion. Finally, we combined Distance Intersection over Union with Non-Maximum Suppression to improve the missed detection of overlapping targets. Experiments show that the average detection accuracy of the YOLOv5-CBD model is 96.7%—an improvement of 2.1% compared to the baseline model (YOLOv5).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.