Abstract

The 3D computational fluid dynamics (CFD) model and fluid structure interaction (FSI) model of water-lubricated rubber bearing with 10 axial grooves was built by ADINA and the influences of axial velocity, rotating speed on deformation of bearing bush and distribution of water film pressure are researched in this article. The results show that elastic deformation of bearing bush reduces water film pressure relative to rigid assumption; with the increasing of axial velocity, the deformation of bearing bush and water film pressure increases; and the axial velocity has a obvious influence on the front of bearing bush and water film pressure; with the increasing of bearing rotating speed, the deformation of bearing bush and water film pressure raises, but the deformation of bearing bush and water film pressure in water grooves are almost close to zero.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.