Abstract

Phosphate plays a crucial role in microbial proliferation, and the regulation of the phosphate concentration can modulate the fermentation efficiency. In this study, based on Lambert-Beer's Law and the selective absorption characteristics of substances under light, a dual-light-type photoelectric colorimetric device for phosphate determination was designed. The device's main components, such as the excitation light path and incubation stations, were modeled and simulated. The primary performance of the instrument was verified, and comparative experiments with a UV-1780 spectrophotometer were conducted to validate its performance. The experimental results demonstrate that this device exhibits a high degree of linearity with an R2 value of 0.9956 and a repeatability of ≤1.72%. The average temperature rise rate at the incubation stations was measured at 0.44 °C/s, with a temperature uniformity ≤ ±0.1 °C (temperature set at 37.3 °C). Consistently observed trends in the measurement of 23 CHO cell suspensions using the UV-1780 spectrophotometer further validated the accuracy and reliability of the device's detection results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.