Abstract
Insect pest recognition and detection are vital for food security, a stable agricultural economy and quality of life. To realise rapid detection and recognition of insect pests, methods inspired by human visual system were proposed in this paper. Inspired by human visual attention, Saliency Using Natural statistics model (SUN) was used to generate saliency maps and detect region of interest (ROI) in a pest image. To extract the invariant features for representing the pest appearance, we extended the bio-inspired Hierarchical Model and X (HMAX) model in the following ways. Scale Invariant Feature Transform (SIFT) was integrated into the HMAX model to increase the invariance to rotational changes. Meanwhile, Non-negative Sparse Coding (NNSC) is used to simulate the simple cell responses. Moreover, invariant texture features were extracted based on Local Configuration Pattern (LCP) algorithm. Finally, the extracted features were fed to Support Vector Machines (SVM) for recognition. Experimental results demonstrated that the proposed method had an advantage over the compared methods: HMAX, Sparse Coding and Natural Input Memory with Bayesian Likelihood Estimation (NIMBLE), and was comparable to the Deep Convolutional Network. The proposed method has achieved a good result with a recognition rate of 85.5% and could effectively recognise insect pest under complex environments. The proposed method has provided a new approach for insect pest detection and recognition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.