Abstract
As a self-equilibrated system under prestresses, the internal forces and geometric configurations of tensegrity structures are highly related. Consequently, by employing active control units internally, the lengths of structural components can be adjusted, enabling control over the structural shape and facilitating its motion and actuation. Fluid actuation, as a common type of driving mechanism, is typically achieved by using external fluid actuators or directly replacing structural components with them. In order to better realize the combination of flexible, efficient and adaptable fluid-driven strategy with lightweight, flexible and adjustable tensegrity structure, this paper proposes an innovative pipe-strut tensegrity structure based on the topology of traditional tensegrity structure. In the proposed structure, conventional cables are replaced by flexible pipes to establish a continuous fluid path. This construction concept promotes the flow of fluid within the structure, enabling the proposed structure to deform or move under the influence of the fluid flow. With structural and hydraulic analyses serving as the theoretical foundation, a simplified calculation theory based on the fluid-structure interaction is thoroughly investigated to analyze this innovative structure. Two specific examples are presented to demonstrate the feasibility of the novel configuration, validate the accuracy of the proposed calculation theory, and verify the possibility of deformation and motion trend of the proposed fluid-driven pipe-strut structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.