Abstract

Ultracold atom photoassociation spectroscopy is significant for studying the long-range molecular potential energy structure. The signal-noise ratio of ultracold Cesium Molecule photoassociation Rovibronic Spectrum is one of the indicators as a measure of detection technology which directly affect the distinguishing ability and detection sensitivity of the spectra. We obtain an long-range ultracold cesium molecular hyperfine rovibration spectra by modulating the fluorescence spectroscopy. We find that demodulation parameters have a significant impact to the signal-noise ratio of spectra by studying the demodulation parameters such as integration time and sensitivity, which show nonlinear relation with the ratio. We achieve the optimal control of the signal-noise ratio for spectrum according to our experiment, which laid an important foundation for further studying the long-range state rovibration level of ultracold cesium molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.