Abstract

With the development of smart logistics, current small distribution centers have begun to use intelligent equipment to indirectly read bar code information on courier sheets to carry out express sorting. However, limited by the cost, most of them choose relatively low-end sorting equipment in a warehouse environment that is complex. This single information identification method leads to a decline in the identification rate of sorting, affecting efficiency of the entire express sorting. Aimed at the above problems, an express recognition method based on deeper learning and multi-information fusion is proposed. The method is mainly aimed at bar code information and three segments of code information on the courier sheet, which is divided into two parts: target information detection and recognition. For the detection of target information, we used a method of deeper learning to detect the target, and to improve speed and precision we designed a target detection network based on the existing YOLOv4 network, Experiments show that the detection accuracy and speed of the redesigned target detection network were much improved. Next for recognition of two kinds of target information we first intercepted the image after positioning and used a ZBAR algorithm to decode the barcode image after interception. The we used Tesseract-OCR technology to identify the intercepted three segments code picture information, and finally output the information in the form of strings. This deeper learning-based multi-information identification method can help logistics centers to accurately obtain express sorting information from the database. The experimental results show that the time to detect a picture was 0.31 s, and the recognition accuracy was 98.5%, which has better robustness and accuracy than single barcode information positioning and recognition alone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.