Abstract

Abstract The human ball joint is a compact and flexible 3-degree-of-freedom (DOF) composite joint. The ball joints commonly used in robot design lack active driving capability. Ball joints with active drive generally consist of three single-degree-of-freedom joints connected in series, which is a noncompacted structure and easily leads to singular postures. In order to meet the demand for high-performance composite joint modules for service robots, this article designs a flexible biomimetic spherical robot joint with variable stiffness characteristics: the mechanism of muscle parallel antagonistic drive and ligament wrapping constraint is simulated; three parallel branch chains are used to drive three composite degrees-of-freedom; ropes, soft airbags, and series elastic drive gears are used to form a flexible transmission system; the contour of the rope winch has been optimized with the aim of transmission stability; and a pneumatic variable stiffness soft structure has been designed and fabricated. A compliance control algorithm for joints was developed based on the principle of impedance control. The research results indicate that the biomimetic ball-and-socket joint has a compact structure, a wide range of motion and good motion tracking performance, variable stiffness performance, and flexible interaction ability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.