Abstract

AbstractIn this study, the thermal and mechanical behaviors were investigated by simulating laser remelting of atmospheric plasma‐sprayed yttria‐stabilized zirconia coatings, and the molten depth and regions of stress concentration were compared between simulation and experiment. The heat treatment process of the remelted coating was also simulated. The crack formation mechanism in the YSZ coating remelted by laser and the heat‐treatment effect on residual stress were investigated. Results showed that the simulated results were consistent with the experimental measurements, and the residual thermal stress was the main cause of cracks formation. The coating remelted by a laser power of 1500 W and a scanning rate of 9 mm/s possessed less residual concentrated stress and segmented cracks. Heat treatment released concentrated stress, which was still accurate for the ceramic coating. If the coatings were slowly heated to demonstrate heat treatment after laser remelting, the cracks in the remelted layer decreased correspondingly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.