Abstract

Because of the liquid phase’s driving action, particles would be collided the surface and impacted with each other in the flow passage, the surface will be machined though the continuous action of impact force and friction force. The finishing results of structural surface is related to the collision frequency and the pressure, abrasion situation in different area of the structural surface can be analyzed obviously by investigating dynamic characteristic and distribution of particle group. Based on coupled wave theory of liquid-solid two phases flow, using mixture model which belongs to Euler-Euler multiphase flow model and realizable turbulence model, turbulence effects of liquid-solid two-phase flow in the wall is numerical simulated and some parameters such as turbulent velocity and turbulent energy are calculated with different particles concentration in the flow passage which has V-shaped texture and semicircular cross-section. The simulation results show that the disorder degree of turbulence can be improved by assembling V-shaped constrained component, because V-shaped passage is benefit of eddy current’s generation. As the concentration of particles being enhanced, the velocity of particle would be increased in a certain range, turbulence energy reduces gradually, fluctuation margin of particle volume fraction is smaller and smaller, and curves of every kind of parameters change as continuous oscillation, area of surface corresponded with crest of the curve. The concentration of particles should be selected properly and different particles distribution and finishing performance would be obtained with different particles concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.