Abstract

Using the simulated data of Problem 2 for Genetic Analysis Workshop 14 (GAW14), we investigated the ability of three bootstrap-based resampling estimators (a shrinkage, an out-of-sample, and a weighted estimator) to reduce the selection bias for genetic effect estimation in genome-wide linkage scans. For the given marker density in the preliminary genome scans (7 cM for microsatellite and 3 cM for SNP), we found that the two sets of markers produce comparable results in terms of power to detect linkage, localization accuracy, and magnitude of test statistic at the peak location. At the locations detected in the scan, application of the three bootstrap-based estimators substantially reduced the upward selection bias in genetic effect estimation for both true and false positives. The relative effectiveness of the estimators depended on the true genetic effect size and the inherent power to detect it. The shrinkage estimator is recommended when the power to detect the disease locus is low. Otherwise, the weighted estimator is recommended.

Highlights

  • After a genetic marker or candidate gene has been identified from a genome-wide scan as a putative disease susceptibility locus, it is of interest to estimate the associated genetic effect on the related phenotype

  • Locusspecific effect estimates are subject to upward selection bias because of stringent test criteria adopted in genomewide scans

  • Sun and Bull [2] proposed three resampling-based estimators that can be applied to the original sample at the location where the maximum test statistic exceeds a genome-wide significance criterion

Read more

Summary

Introduction

After a genetic marker or candidate gene has been identified from a genome-wide scan as a putative disease susceptibility locus, it is of interest to estimate the associated genetic effect on the related phenotype. Sun and Bull [2] proposed three resampling-based estimators that can be applied to the original sample at the location where the maximum test statistic exceeds a genome-wide significance criterion. They demonstrated effective bias reduction in analytic and simulation studies of a homogenous population with a single disease gene. In their simulation studies, they compared a catalog of resampling methods, including cross-validation and bootstrapping, and their results suggested that bootstrap methods perform best in terms of smaller mean squared error. We focused on the bootstrap method in the current study

Objectives
Methods
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.