Abstract
The Drosophila immune system is able to discriminate between classes of bacteria. Detection of Gram-positive bacteria involves a complex of two pattern recognition receptors: peptidoglycan recognition protein SA (PGRP-SA) and Gram-negative binding protein 1 (GNBP1). These activate the Toll signalling pathway. To define the cell wall components sensed by the host, we used highly purified peptidoglycan fragments of two principal Gram-positive bacterial pathogens Staphylococcus aureus and Streptococcus pneumoniae. We report that in both peptidoglycans, the minimal structure needed to activate the Toll pathway is a muropeptide dimer and that the free reducing end of the N-acetyl muramic acid residues of the muropeptides is essential for activity. Monomeric muropeptides were inactive and inhibitory in combination with dimers. Finally, peptidoglycan was degraded by the haemolymph of wild-type but not GNBP1 mutant flies. We suggest a model whereby GNBP1 is involved in the hydrolysis of Gram-positive peptidoglycan producing new glycan reducing ends, which are subsequently detected by PGRP-SA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.