Abstract

The pulsed wire method is an attractive option to measure the magnetic field in insertion devices, mainly for those with restricted access (e.g., small gaps, in-vacuum/cryogenic environments, etc.). Besides first and second field integrals, experiments have proved the feasibility of reconstructing the magnetic field profile. Undulators with a small gap and short period are — and are planned to be — used at diffraction-limited storage rings and free-electron lasers. This contribution outlines the pulsed wire system’s requirements to perform magnetic field reconstruction in such undulators. We examine the main expected limitations, particularly the dispersive, finite pulse-width, discretization error, and sag effects. Furthermore, we present the current status of developing the pulsed wire system at the European XFEL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.