Abstract

Abstract This study explores the use of a recent metaheuristic algorithm called a reptile search algorithm (RSA) to handle engineering design optimization problems. It is the first application of the RSA to engineering design problems in literature. The RSA optimizer is first applied to the design of a bolted rim, which is constrained optimization. The developed algorithm is then used to solve the optimization problem of a vehicle suspension arm, which aims to solve the weight reduction under natural frequency constraints. As function evaluations are achieved by finite element analysis, the Kriging surrogate model is integrated into the RSA algorithm. It is revealed that the optimum result gives a 13% weight reduction compared to the original structure. This study shows that RSA is an efficient metaheuristic as other metaheuristics such as the mayfly optimization algorithm, battle royale optimization algorithm, multi-level cross-entropy optimizer, and red fox optimization algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.