Abstract

BackgroundThe Yangzhou goose is a long-day breeding bird that has been increasingly produced in China. Artificial lighting programs are used for controlling its reproductive activities. This study investigated the regulations of photostimulation and photorefractoriness that govern the onset and cessation of the breeding period.ResultsIncreasing the daily photoperiod from 8 to 12 h rapidly stimulated testis development and increased plasma testosterone concentrations, with peak levels being reached 2 months after the photoperiod increase. Subsequently, testicular activities, testicular weight, spermatogenesis, and plasma testosterone concentrations declined steadily and reached to the nadir at 5 months after the 12-hour photoperiod. Throughout the experiment, plasma concentrations of triiodothyronine and thyroxine changed in reciprocal fashions to that of testosterone. The stimulation of reproductive activities caused by the increasing photoperiod was associated with increases in gonadotropin-releasing hormone (GnRH), but decreases in gonadotropin-inhibitory hormone (GnIH) and vasoactive intestinal peptide (VIP) gene messenger RNA (mRNA) levels in the hypothalamus. In the pituitary gland, the levels of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) mRNA abruptly increased during the longer 12-hour photoperiod. The occurrence of photorefractoriness was associated with increased GnIH gene transcription by over 250-fold, together with increased VIP mRNA levels in the hypothalamus, and then prolactin and thyroid-stimulating hormone in the pituitary gland. FSH receptor, LH receptor, and StAR mRNA levels in the testis changed in ways paralleling those of testicular weight and testosterone concentrations.ConclusionsThe seasonal reproductive activities in Yangzhou geese were directly stimulated by a long photoperiod via upregulation of GnRH gene transcription, downregulation of GnIH, VIP gene transcription, and stimulation of gonadotrophin. Development of photorefractoriness was characterized by hyper-regulation of GnIH gene transcription in the hypothalamus, in addition of upregulation of VIP and TRH gene transcription, and that of their receptors, in the pituitary gland.

Highlights

  • The Yangzhou goose is a long-day breeding bird that has been increasingly produced in China

  • The classic theory of photoperiodic regulation of seasonal reproductive activities in birds proposes that light signals are perceived by photoreceptors in the deep brain, and induce the secretion of thyroid-stimulating hormone (TSH) from the pars tuberalis, which acts on ependymal cells to induce the thyroid hormoneactivating enzyme type 2 deiodinase

  • In group A ganders, which were already exposed to a 12-hour photoperiod since one month, plasma testosterone concentrations had already increased to significantly higher levels of approximately 6 ng/mL (P = 0.024, F = 10.743) (Fig. 2c)

Read more

Summary

Introduction

The Yangzhou goose is a long-day breeding bird that has been increasingly produced in China. Most birds exhibit well-defined seasonal changes in gonadal development, body mass, molting, metabolism, and other physiological parameters [1]. The classic theory of photoperiodic regulation of seasonal reproductive activities in birds proposes that light signals are perceived by photoreceptors in the deep brain, and induce the secretion of thyroid-stimulating hormone (TSH) from the pars tuberalis, which acts on ependymal cells to induce the thyroid hormoneactivating enzyme type 2 deiodinase. In addition to positive regulation by GnRH, the reproductive system is negatively regulated by gonadotropininhibitory hormone (GnIH), whose secretion is subject to photoperiodic regulation [13, 19, 20]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.